USN

15MATDIP31

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Additional Mathematics – I

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Express
$$\frac{(3+i)(1-3i)}{2+i}$$
 in the form $x + iy$. (06 Marks)

Find the modulus and amplitude of $1 - \cos \alpha + i \sin \alpha$. (05 Marks)

c. Solve
$$z^3 + 1 = 0$$
 (05 Marks)

2 a. Prove that
$$\left(\frac{\cos\theta + i\sin\theta}{\sin\theta + i\cos\theta}\right)^4 = \cos 8\theta + i\sin 8\theta$$
. (06 Marks)

Show that if $\vec{a} = i + j + 2k$, $\vec{b} = 2i - j + k$ then $\vec{a} + \vec{b}$ is perpendicular to $\vec{a} - \vec{b}$. (05 Marks)

c. If \vec{a} , \vec{b} , \vec{c} are any three non-zero vectors, then prove that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$.

(05 Marks)

3 a. Find the nth derivative of
$$e^{ax} \sin(bx+c)$$
. (06 Marks)

b. If
$$y = e^{m \sin^{-1} x}$$
 then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$. (05 Marks)

 $\begin{array}{llll} b. & \text{If } y=e^{m\sin^{-1}x} \text{ then prove that } (1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2+m^2)y_n=0\,. \\ c. & \text{Show that the following pair of curves intersect orthogonally} \end{array}$ $r = a(1 + \cos \theta),$ $r = b(1 - \cos\theta)$. (05 Marks)

4 a. Find the pedal equation to the curve
$$r = a(1 + \sin \theta)$$
.

b. If
$$\mathbf{u} \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x}^2 + \mathbf{y}^2$$
, then prove that $\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right)^2 = 4\left(1 - \frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right)$. (05 Marks)

c. If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. (05 Marks)

Module-3

5 a. Obtain the reduction formula for
$$\int \cos^n x dx$$
, where n being a +ve integer. (06 Marks)

b. Evaluate
$$\int_{0}^{1} x^{3/2} (1-x)^{3/2} dx$$
 (05 Marks)

c. Evaluate
$$\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx$$
 (05 Marks)

15MATDIP31

OR

a. Evaluate $\int x \sin^6 x dx$ (06 Marks)

b. Evaluate
$$\int_{0}^{\infty} \frac{x^2}{(1+x^6)^{7/2}} dx$$
 (05 Marks)

c. Evaluate
$$\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y+z} dx dy dz$$
 (05 Marks)

<u> Module-4</u>

- a. A particle moves along the curve $x = 2t^2$, $y = t^2 4$, z = 3t 5, find the components of 7 velocity and acceleration in the direction of the vector i-3j+2k at t=2. (06 Marks)
 - b. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
 - c. Find the constants 'a' and 'b' such that $\vec{F} = (axy + z^3)i + (3x^2 z)j + (bxz^2 y)$ is irrotational. (05 Marks)

- OR Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, +1) in the direction 2i j 2k. 8 (06 Marks)
 - b. If $\vec{r} = xi + yj + zk$ and $r = |\vec{r}|$ then prove that $\nabla(r^n) = nr^{n-2}\vec{r}$. (05 Marks)
 - Show that the vector $\vec{F} = (-2x^2y + yz)i + (xy^2 xz^2)j + (2xyz 2x^2y^2)k$ is solenoidal. (05 Marks)

Module-5

Solve $(x^2 - y^2)dx - xydy = 0$. (06 Marks)

b. Solve
$$\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y\cos y}$$
. (05 Marks)

c. Solve
$$\frac{dy}{dx} + y \cot x = \cos x$$
. (05 Marks)

a. Solve (x+2y-3)dx-(2x+y-3)dy=0. (06 Marks)

b. Solve $(1+y^2)dx = (\tan^{-1} y - x)dy$. (05 Marks)

c. Solve $(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0$. (05 Marks)